
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, Illinois 60439
LINE SEARCH ALGORITHMS WITH GUARANTEED SUFFICIENTDECREASEJorge J. Mor�e and David J. Thuente�Mathematics and Computer Science DivisionPreprint MCS-P330-1092October 1992
Work supported by the Applied Mathematical Sciences subprogram of the O�ce of EnergyResearch, U.S. Department of Energy, under Contract W-31-109-Eng-38.� Permanent address: Department of Mathematical Sciences, Indiana-Purdue University,Fort Wayne, Indiana 46805



ABSTRACTThe problem of �nding a point that satis�es the su�cient decrease and curvature conditionis formulated in terms of �nding a point in a set T (�). We describe a search algorithms forthis problem that produces a sequence of iterates that converge to a point in T (�) and that,except for pathological cases, terminates in a �nite number of steps. Numerical results foran implementation of the search algorithm on a set of test functions show that the algorithmterminates within a small number of iterations.



LINE SEARCH ALGORITHMS WITH GUARANTEED SUFFICIENTDECREASEJorge J. Mor�e and David J. Thuente�1 IntroductionGiven a continuously di�erentiable function � : IR ! IR de�ned on [0;1) with �0(0) < 0,and constants � and � in (0; 1), we are interested in �nding an � > 0 such that�(�) � �(0) + ��0(0)� (1:1)and j�0(�)j � �j�0(0)j: (1:2)The development of a search procedure that satis�es these conditions is a crucial ingredientin a line search method for minimization. The search algorithm described in this paper hasbeen used by several authors, for example, Liu and Nocedal [10], O'Leary [12], Schlick andFogelson [14, 15], and Gilbert and Nocedal [7]. This paper describes this search procedureand the associated convergence theory.In a line search method we are given a continuously di�erentiable function f : IRn ! IRand a descent direction p for f at a given point x 2 IRn. Thus, if�(�) � f(x+ �p); � � 0; (1:3)then (1.1) and (1.2) de�ne an acceptable step. The motivation for requiring conditions (1.1)and (1.2) in a line search method should be clear. If � is not too small, condition (1.1) forcesa su�cient decrease in the function. However, this condition is not su�cient to guaranteeconvergence, because it allows arbitrarily small choices of � > 0. Condition (1.2) rules outarbitrarily small choices of � and usually guarantees that � is near a local minimizer of �.Condition (1.2) is a curvature condition because it implies that�0(�)� �0(0) > (1� �)j�0(0)j;and thus the average curvature of � on (0; �) is positive. The curvature condition (1.2)is particularly important in a quasi-Newton method because it guarantees that a positivede�nite quasi-Newton update is possible. See, for example, Dennis and Schnabel [4] andFletcher [6].Work supported in part by the Applied Mathematical Sciences subprogram of the O�ce of EnergyResearch of the U.S. Department of Energy under Contract W-31-109-Eng-38.�Permanent address: Department of Mathematical Sciences, Indiana-Purdue University, Fort Wayne,Indiana 46805. 1



As �nal motivation for the solution of (1.1) and (1.2), we mention that if a step sat-is�es these conditions, then the line search method is convergent for reasonable choices ofdirection. See, for example, Dennis and Schnabel [4] and Fletcher [6] for gradient-relatedmethods; Powell [13] and Byrd, Nocedal, and Yuan [3] for quasi-Newton methods; and Al-Baali [1], Liu and Nocedal [10], and Gilbert and Nocedal [7] for conjugate gradient methods.In most practical situations it is important to impose additional requirements on �. Inparticular, it is natural to require that � satisfy the bounds0 � �min � � � �max: (1:4)The main reason for requiring a lower bound �min is to terminate the iteration, while theupper bound �max is needed when the search is used for linearly constrained optimizationproblems or when the function � is unbounded below. In linearly constrained optimizationproblems the parameter �max is a function of the distance to the nearest active constraint.An unbounded problem can be approached by accepting any � in [�min; �max] such that�(�) � �min, where �min < �(0) is a lower bound speci�ed by the user of the search. Inthis case �max = 1� ��(0)� �min��0(0) � (1:5)is a reasonable setting because if �max satis�es the su�cient decrease condition (1.1), then�(�max) � �min. On the other hand, if �max does not satisfy the su�cient decreasecondition, then we will show that it is possible to determine an acceptable �.The main problem that we consider in this paper is to �nd an acceptable � in the sensethat � belongs to the setT (�) � n� > 0 : �(�) � �(0) + ���0(0); j�0(�)j � �j�0(0)jo:By phrasing our results in terms of T (�) we make it clear that the search algorithm isindependent of �; the parameter � is used only in the termination test of the algorithm.Another advantage of phrasing the results in terms of T (�) is that T (�) is usually notempty. For example, T (�) is not empty when � is bounded below.Several authors have done related work on the solution of (1.1) and (1.2). For example,Gill and Murray [8] attacked (1.1) and (1.2) by using a univariate minimization algorithmfor � to �nd a solution �� to (1.2). If �� did not satisfy (1.1), then �� was repeatedly halvedin order to obtain a solution �� to (1.1). Of course, �� did not necessarily satisfy (1.2); butif � was su�ciently small, then it was argued that this was an unlikely event. In a similarvein, we mention that the search algorithm of Shanno and Phua [16, 17] is not guaranteedto work in all cases. In particular, the su�cient decrease condition (1.1) can rule out manyof the points that satisfy (1.2), and then the algorithm is not guaranteed to converge.Gill, Murray, Saunders, and Wright [9] proposed an interesting variation on (1.1) and(1.2) when they argued that if there is no solution to (1.1) and (1.2), then it was necessary2



to compute a point such that �(�) = �(0) + ��0(0)�: (1:6)If (1.6) has a solution, then their algorithm computes a sequence of nested intervals suchthat each interval contains points that satisfy (1.1) and (1.2), or just (1.6). Their algorithm,however, is not guaranteed to produce a point that satis�es (1.1) and (1.2).Fletcher [5] suggested that it is possible to compute a sequence of nested intervals thatcontain points that satisfy (1.1) and (1.2), but he did not prove any result along these lines.This suggestion led to the algorithms developed by Al-Baali and Fletcher [2] and Mor�e andSorensen [11]. In this paper we provide a convergence analysis, implementation details, andnumerical results for the algorithm of Mor�e and Sorensen [11].The search algorithm for T (�) is de�ned in Section 2. We show that the search algorithmproduces a sequence of iterates that converge to a point in T (�) and that, except forpathological cases, the search algorithm produces a �nite sequence �0; : : : ; �m of trial valuesin [�min; �max], where �m 2 T (�) or is one of the bounds. Termination at one of the boundscan be avoided by a suitable choice of bounds. For example, if �min = 0 and �max is de�nedby (1.5), then either �m lies in T (�) or �(�m) � �min.The results of Section 2 show that the search algorithm can be used to �nd an � thatsatis�es (1.1) and (1.2) when � � �. A result for an arbitrary � 2 (0; �) requires additionalassumptions because there may not be an � that satis�es (1.1) and (1.2) even if � is boundedbelow. In Section 3 we show that if the search algorithm generates an iterate �k that satis�esthe su�cient decrease condition and �0(�k) > 0, then the search algorithm terminates atan �k that satis�es (1.1) and (1.2).Given �0 in [�min; �max], the search algorithm generates a sequence of nested intervalsfIkg and a sequence of iterates �k 2 Ik\[�min; �max]. Section 4 describes the speci�c choicesfor the trial values �k that are used in our algorithm. Our numerical results indicate thatthese choices lead to fast termination.Section 5 describes a set of test problems and numerical results for the search procedure.The �rst three functions in the test set have regions of concavity, while the last threefunctions are convex. In all cases the functions have a unique minimizer. The emphasisin the numerical results is to explain the qualitative behavior of the algorithm for a widerange of values of � and �.2 The Search Algorithm for T (�)In this section we present the search algorithm for determining an � in T (�). We assumethat � is continuously di�erentiable on [0; �max] with �0(0) < 0. Most work on line searchesassumes that � < 12 , because if � is a quadratic with �0(0) < 0 and �00(0) > 0, then the3



global minimizer �� of � satis�es�(��) = �(0) + 12���0(0);and thus �� satis�es (1.1) only if � � 12 . The restriction � < 12 also allows � = 1 to beultimately acceptable to Newton and quasi-Newton methods. In this section we need onlyassume that � lies in (0; 1).Given �0 in [�min; �max], the search algorithm generates a sequence of nested intervalsfIkg and a sequence of iterates �k 2 Ik \ [�min; �max] according to the following procedure.Search Algorithm. Set I0 = [0;1].For k = 0; 1; : : :Choose a safeguarded �k 2 Ik \ [�min; �max].Test for convergence.Update the interval Ik .In this description the term safeguarded �k refers to the rules that force convergence of thealgorithm. For the moment we assume that a safeguarded choice is made, and discuss theupdating of Ik .The aim of the updating process for the intervals Ik is to identify and generate an intervalIk such that T (�) \ Ik is not empty, and then re�ne the interval so that T (�) \ Ik remainsnot empty. We now specify conditions on the endpoints of an interval I that guarantee thatI has a nonempty intersection with T (�). The conditions on the endpoints �l and �u arespeci�ed in terms of the auxiliary function  de�ned by (�) � �(�)� �(0)� ��0(0)�:We assume that �l 6= �u but do not assume that �l and �u are ordered.Theorem 2.1 Let I be a closed interval with endpoints �l and �u. If the endpoints satisfy (�l) �  (�u);  (�l) � 0;  0(�l)(�u � �l) < 0; (2:1)then there is an �� in I with  (��) �  (�l) and  0(��) = 0. In particular, �� 2 (T (�)\ I).Proof. Assume that �u > �l; the proof in the other case is similar. De�ne�m = supn� 2 [�l; �u] :  (�) � 0; � 2 [�l; �]o:Then �m > �l, because  0(�l) < 0. We �rst claim that  (�m) �  (�l). The assumptionon �u shows that this is certainly the case if �m = �u. This also holds if �m < �u, becausein this case the de�nition of �m implies that  (�m) = 0, and thus  (�m) = 0 �  (�l).4



De�ne �� to be a global minimizer of  on [�l; �m]. We claim that �� 2 T (�). Theglobal minimum cannot be achieved at �l because  0(�l) < 0; and since we have establishedthat  (�m) �  (�l), the global minimum cannot be achieved at �m. Hence, �� is in theinterior of [�l; �m]. In particular,  0(��) = 0, and thus j�0(��)j = �j�0(0)j. We also knowthat �� satis�es (1.1) because  (�) � 0 for all � in [�l; �m]. Hence, �� 2 T (�), as desired.� Theorem 2.1 provides the motivation for the search algorithm by showing that if theendpoints of I satisfy (2.1), then  has a minimizer �� in the interior of I and, moreover,that �� belongs to T (�). Thus the search algorithm can be viewed as a procedure forlocating a minimizer of  .The assumptions that Theorem 2.1 imposes on the endpoints �l and �u cannot berelaxed because if we �x �l and �u by the assumption  (�l) �  (�u), then the result failsto hold if either of the other two assumptions are violated. The assumptions (2.1) can beparaphrased by saying that �l is the endpoint with lowest  value, that �l satis�es thesu�cient decrease condition (1.1), and that �u � �l is a descent direction for  at �l sothat  (�) <  (�l) for all � in I su�ciently close to �l. In particular, this last assumptionguarantees that  can be decreased by searching near �l.We now describe an algorithm for updating the interval I , and then show how to usethis algorithm to obtain an interval that satis�es the conditions of Theorem 2.1.Updating Algorithm. Given a trial value �t in I , the endpoints �+l and �+u of theupdated interval I+ are determined as follows:Case U1: If  (�t) >  (�l), then �+l = �l and �+u = �t.Case U2: If  (�t) �  (�l) and  0(�t)(�l � �t) > 0, then �+l = �t and �+u = �u.Case U3: If  (�t) �  (�l) and  0(�t)(�l � �t) < 0, then �+l = �t and �+u = �l.It is straightforward to show that if the endpoints �l and �u satisfy (2.1), then the updatedendpoints �+l and �+u also satisfy (2.1) unless  0(�t) = 0 and  (�t) �  (�l). Of course, inthis case there is no need to update I because �t belongs to T (�).Al-Baali and Fletcher [2] present two updating schemes. The aim of scheme S1 is toidentify a point that satis�es (1.1) and �0(�) � ��0(0), while scheme S2 seeks a point thatsatis�es (1.1) and (1.2). In scheme S2 the endpoints �+l and �+u are determined as follows:If  (�t) > 0 or if �(�t) > �(�l), then�+l = �l and �+u = �t,else if �0(�t)(�l � �u) > 0, then�+l = �t and �+u = �u,else �+l = �t and �+u = �l. 5



The two updating algorithms produce the same iterates as long as (�t) > 0; or  (�t) � 0;  (�t) �  (�l);but di�er in their treatment of the situation where (�t) � 0;  (�t) >  (�l); �(�t) < �(�l); �l < �t < �u:In this case, our updating algorithm chooses I+ = [�l; �t], while scheme S2 sets I+ = [�t; �u]if �0(�t) < 0. Our algorithm seems to be preferable in this situation because the interval I+contains an acceptable point, while the interval generated by scheme S2 is not guaranteedto contain an acceptable point.We now show how the updating algorithm can be used to determine an interval I in[0; �max] with endpoints that satisfy (2.1). Initially �l = 0 and �u = 1. Consider anytrial value �t in [�min; �max]. If cases U1 or U3 hold, then we have determined an intervalwith endpoints �l and �u that satisfy the conditions of Theorem 2.1. Otherwise case U2holds, and we can repeat the process for some �+t in [�t; �max]. We continue generatingtrial values in [�l; �max] as long as case U2 holds, but require that eventually �max be usedas a trial value. This is done by choosing�+t 2 hminf�max�t; �maxg; �maxi (2:2)for some factor �max > 1. In our implementation we use�+t = minf�t + �(�t � �l); �maxg; � 2 [1:1; 4];and thus an induction argument shows that (2.2) holds with �max = 1:1.Since �l = 0 initially and  (0) = 0, the sequence �0; �1; : : : of trial values is increasingwith  (�k) � 0 and  0(�k) < 0; k = 0; 1; : : : ; (2:3)as long as case U2 holds. The search algorithm terminates at �max if  (�max) � 0 and 0(�max) < 0. This is a reasonable termination criterion because Theorem 2.1 shows thatwhen these conditions do not hold there is an �� 2 T (�) with �� � �max. Thus, after a�nite number of trial values, either the search algorithm terminates at �max, or the searchalgorithm generates an interval with endpoints that satisfy conditions (2.1).Given an interval that satis�es conditions (2.1), the search algorithm uses the updatingalgorithm to re�ne I . We claim that if the search algorithm does not generate an intervalI in [�min; �max] that satis�es conditions (2.1), then the sequence f�kg of trial values isdecreasing with  (�k) > 0 or  0(�k) � 0; k = 0; 1; : : : : (2:4)6



This claim is established by considering all three cases of the updating algorithm. If weuse an �t with  (�t) � 0 and  0(�t) < 0 , and case U2 or U3 holds, then the updatingalgorithm shows that the interval I+ lies to the right of �t. Since �t � �min, the intervalI+ contains [�min; �max]. If case U1 holds, then  (�l) < 0, and thus �l � �min. Hence, theupdated interval contains [�min; �max].We force the search algorithm to use �min as a trial value when (2.4) holds and �min > 0.This is done by choosing �+t 2 h�min;maxf�min�t; �mingi (2:5)for some factor �min < 1. In our implementation (2.5) holds with �min = 712 . For moredetails, see Section 4.The search algorithm terminates at �min if  (�min) > 0 or  0(�min) � 0. This is areasonable termination criterion because Theorem 2.1 shows that there is an �� 2 T (�)with �� � �min when these conditions hold. Thus, after a �nite number of trial values,either the search algorithm terminates at �min, or the search algorithm generates an intervalI in [�min; �max] with endpoints that satisfy conditions (2.1).The requirements (2.2) and (2.5) are two of the safeguarding rules. Note that (2.2) isenforced only when (2.3) holds, while (2.5) is used when (2.4) holds. If the search algorithmgenerates an interval I in [�min; �max], then we need a third rule to guarantee that thechoice of �t forces the length of I to zero. In our implementation this is done by monitoringthe length of I ; if the length of I does not decrease by a factor of � < 1 after two trials,then a bisection step is used for the next trial �t. In our implementation we use � = 0:66.Theorem 2.2 The search algorithm produces a sequence f�kg in [�min; �max] such thatafter a �nite number of trial values one of the following conditions hold.The search terminates at �max, the sequence of trial values is increasing, and (2.3) holds.The search terminates at �min, the sequence of trial values is decreasing, and (2.4) holds.An interval Ik � [�min; �max] is generated.Proof. In this proof we essentially summarize the arguments presented above. Let �(k)l and�(k)u be the endpoints of Ik, and de�ne�(k)l = minn�(k)l ; �(k)u o; �(k)u = maxn�(k)l ; �(k)u o:The left endpoint �(k)l of Ik is nondecreasing, while the right endpoint is nonincreasing.We �rst show that �(k)u = 1 cannot hold for all k � 0. If �(k)u = 1, then only case U2of the updating algorithm holds because in the other two cases both endpoints are set to�nite values. Since only case U2 holds, it is clear that (2.3) holds, and thus the safeguarding7



rule (2.2) shows that the bound �max is eventually used as a trial value. If the search doesnot terminate at �max, then �(k)u = �max.A similar argument shows that �(k)l = 0 cannot hold for all k � 0. If �(k)l = 0, thenonly case U1 or U3 of the updating algorithm holds because in case U2 both endpoints areset to positive values. Moreover, in this case (2.4) holds. The safeguarding rule (2.5) showsthat (2.4) cannot hold for all k � 0 when �min = 0, and that if �min > 0, then �min iseventually used as a trial value. If the search does not terminate at �min, then �(k)u = �min.We have thus shown that after a �nite number of trial values, either the search terminatesat one of the two bounds �min or �max, or �(k)l > 0 and �(k)u < 1. Of course, in this lastcase Ik is a subset of [�min; �max]. �The most interesting case of Theorem 2.2 occurs when an interval Ik � [�min; �max]is generated. In this case the safeguarding rules guarantee that the length of the intervalsfIkg converges to zero, and thus the sequence f�kg converges to some �� in T (�).We can rule out �nite termination at one of the bounds by ruling out (2.3) and (2.4).The simplest way to do this is to assume that �min satis�es (�min) � 0 and  0(�min) < 0; (2:6)and that �max satis�es  (�max) > 0 or  0(�max) � 0: (2:7)Under these assumptions, Theorem 2.2 shows that an interval Ik � [�min; �max] is generatedafter a �nite number of trial values.Conditions (2.6) and (2.7) can be easily satis�ed. For example, if �min = 0, then (2.6)holds. Condition (2.7) holds if �max is de�ned by (1.5) and �min is a strict lower bound for�. Condition (2.7) also holds if �0(�max) � 0.Theorem 2.3 If the bounds �min and �max satisfy (2.6) and (2.7), then the search al-gorithm terminates in a �nite number of steps with an �k 2 T (�), or the iterates f�kgconverge to some �� 2 T (�) with  0(��) = 0. If the search algorithm does not terminatein a �nite number of steps, then there is an index k0 such that the endpoints �(k)l , �(k)u ofthe interval Ik satisfy �(k)l < �� < �(k)u . Moreover, if  (��) = 0, then  0 changes sign on[�(k)l ; ��] for all k � k0, while if  (��) < 0, then  0 changes sign on [�(k)l ; ��] or [��; �(k)u ]for all k � k0.Proof. Assume that �k =2 T (�) for all the iterates generated by the search algorithm. Sincethe intervals Ik are uniformly bounded and their lengths tends to zero, any sequence f�kgwith �k 2 Ik must converge to a common limit ��. Theorem 2.1 guarantees that there is a�k 2 (T (�) \ Ik) with �0(�k) = ��0(0). This implies that �� 2 T (�) and that�0(��) = ��0(0):8



In particular,  0(��) = 0.We de�ne k0 by noting that the continuity of �0 shows that there is a k0 > 0 such that�0(�) < 0 for all � 2 Ik and all k � k0. Since  (�(k)l ) � 0 and �(k)l =2 T (�), we must havej�0(�(k)l )j > �j�0(0)j. We also know that �0(�(k)l ) < 0 for k � k0, and thus �0(�(k)l ) < ��0(0).Hence,  0(�(k)l ) < 0. Condition (2.1) on the endpoints implies that �(k)l < �(k)u , and inparticular, �(k)l < �� < �(k)u .Now consider the case where  (��) = 0. We cannot have  0(�) � 0 on [�(k)l ; ��] becausethis implies that  (�(k)l ) >  (��) = 0. Thus  0(�k) > 0 for some �k 2 [�(k)l ; ��]. Since 0(�(k)l ) < 0, we have shown that  0 changes sign on [�(k)l ; ��].Finally, consider the case where  (��) < 0. Assume that k0 is such that  (�(k)u ) < 0for all k � k0. If  0(�(k)u ) � 0, then �0(�(k)u ) � ��0(0), and since �0(�(k)u ) < 0, we have�(k)u 2 T (�). This contradiction shows that  0(�(k)u ) < 0. We have already shown that 0(�(k)l ) < 0, so  0 changes sign on [�(k)l ; ��] or [��; �(k)u ] if  0(�k) > 0 for some �k in[�(k)l ; �(k)u ]. This is clear because if  0(�) � 0 on [�(k)l ; �(k)u ], then  (�(k)l ) >  (�(k)u ). �If the search algorithm does not terminate in a �nite number of steps, then Theorem 2.3implies that  0 changes sign an in�nite number of times in the sense that there is a monotonesequence f�kg that converges to �� and such that  0(�k) 0(�k+1) < 0. Theorem 2.3 thusjusti�es our claim that, except for pathological cases, the search algorithm terminates in a�nite number of iterations. Closely related results have been established by Al-Baali andFletcher [2] and Mor�e and Sorensen [11]. In these results, however, the emphasis is onshowing that the search algorithm eventually generates an �k that satis�es (1.1) and (1.2)provided � < �.3 Search for a Local MinimizerTheorem 2.3 guarantees �nite termination at an �k that satis�es (1.1) and (1.2) provided� > �. In this section we modify the search algorithm and show that under reasonableconditions we can guarantee that the modi�ed search algorithm generates an �k that satis�es(1.1) and (1.2) for any � > 0.A di�culty with setting � < � is that, even if T (�) is not empty, there may not be an� � 0 that satis�es (1.1) and (1.2). We illustrate this point with a minor modi�cation ofan example of Al-Baali and Fletcher [2]. De�ne�(�) = 8><>: 12(1� �)�2 � �; 0 � � � 112(� � 1)� ��; 1 � �; (3:1)where � < � < �. The solid plot in Figure 3.1 is the function � with � = 0:1; the dashedplot is the function l(�) = �(0) + ��0(0)� with � = 0:25. A computation shows that � is9
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Since  0(�(k)l ) < 0, assumptions (2.1) imply that �(k)l < �(k)u . This implies, in particular,that �k > �(k)l so I� is well de�ned.If  0(�k) � 0 and �0(�k) � 0, then it is clear that j�0(�k)j � �j�0(0)j. Since  (�k) � 0,this implies that �k 2 T (�).Now assume that �0(�k) > 0, and let �� be a global minimizer of � on I�. Since �0(�k) >0 and �� is a minimizer, �� 6= �k. Similarly, since we proved above that  0(�(k)l ) < 0, and�� is a minimizer, �� 6= �(k)l .We have shown that �� is in the interior of I�. Hence, �0(��) = 0 as desired. Wecomplete the proof by noting that if �(�) � �(�k) for some � 2 I�, then�(�) � �(�k) � �(0) + ��0(0)�k � �(0) + ��0(0)�:The second inequality holds because �k satis�es (1.1), while the third inequality holdsbecause � � �k. Hence, any � 2 I� with �(�) � �(�k) also satis�es (1.1). �There is no guarantee that the search algorithm will generate an iterate �k such that (�k) � 0 and �0(�k) > 0. For example, if � is the function shown in Figure 3.1, then�0(�) < 0 for all �. Even if � has a minimizer �� that satis�es the su�cient decreasecondition, the search algorithm may be trapped in a region that contains points in T (�),but where (1.1) and (1.2) are not satis�ed.Theorem 3.1 is one of the ingredients needed to develop a search algorithm for a mini-mizer that satis�es the su�cient decrease condition (1.1) and the curvature condition (1.2).We also need to show that the interval I� speci�ed by Theorem 3.1 satis�es the assumptionsof the following result.Theorem 3.2 Let I be a closed interval with endpoints �l and �u. If the endpoints satisfy�(�l) � �(�u); �0(�l)(�u � �l) < 0;then there is an �� in I with �(��) � �(�l) and �0(��) = 0.Proof. The proof of this result is almost immediate. If �� is the global minimizer of � onI , then the assumptions on �l and �u guarantee that �� is in the interior of I and thus�0(��) = 0. �The interval I� speci�ed by Theorem 3.1 satis�es the assumptions of Theorem 3.2 be-cause the derivative of � has the proper sign at the endpoints. We assumed that �0(�k) > 0.Moreover, in Theorem 3.1 we established that �(k)l < �(k)u , and thus assumptions (2.1) onthe endpoints of Ik imply that  0(�(k)l ) < 0. Hence �0(�(k)l ) < 0. These two results showthat I� has the desired properties.We now need to modify the updating algorithm so that we can guarantee �nite termi-nation at an iterate that satis�es the su�cient decrease condition (1.1) and the curvature11



condition (1.2). The modi�cation is simple; we just replace  by � in the updating algo-rithm.Modi�ed Updating Algorithm. Given a trial value �t in I , the endpoints �+l and �+uof the updated interval I+ are determined as follows:Case a: If �(�t) > �(�l), then �+l = �l and �+u = �t.Case b: If �(�t) � �(�l) and �0(�t)(�l � �t) > 0, then �+l = �t and �+u = �u.Case c: If �(�t) � �(�l) and �0(�t)(�l � �t) < 0, then �+l = �t and �+u = �l.We have shown that the interval I� speci�ed by Theorem 3.1 satis�es the assumptions ofTheorem 3.2. Moreover, a short computation shows that if I is any interval that satis�esthe assumptions of Theorem 3.1, then the modi�ed updating algorithm preserves theseassumptions.Our implementation of the search algorithm of Section 2 uses the modi�ed updatingalgorithm in an obvious manner: If some iterate �k satis�es  (�k) � 0 and �0(�k) > 0,then the modi�ed updating algorithm is used on that iteration and all further iterations.Theorem 3.3 Assume that the bounds �min and �max satisfy (2.6) and (2.7). If the mod-i�ed search algorithm generates an iterate such that  (�k) � 0 and �0(�k) > 0, then themodi�ed search terminates at an �k that satis�es (1.1) and (1.2).Proof. If the search algorithm generates an �k with  (�k) � 0 and �0(�k) > 0, thenTheorem 3.1 shows that �k > �(k)l , and thus the modi�ed updating algorithm setsIk+1 = [�(k)l ; �k]because case U2 does not hold. Moreover, Theorem 3.1 guarantees that any � 2 Ik+1 with�(�) � �(�k) satis�es (1.1). This implies that for any iteration j > k the endpoint �(j)lsatis�es (1.1). We also know that any sequence f�kg with �k 2 Ik must converge to acommon limit ��. Since Theorem 3.2 shows that there is a �k 2 Ik such that �0(�k) = 0,we obtain that �0(��) = 0. Hence, �(j)l satis�es (1.2) for all j > k su�ciently large. Thisproves that the modi�ed search terminates at an iterate that satis�es (1.1) and (1.2). �4 Trial Value SelectionGiven the endpoints �l and �u of the interval I , and a trial value �t in I , the updating al-gorithm described in the preceding section produces an interval I+ that contains acceptablepoints. We now specify the new trial value �+t in I+.We assume that in addition to the endpoints �l and �u, and the trial point �t, wehave function values fl; fu; ft and derivatives gl; gu; gt. The function values fl; fu; ft and12



derivatives gl; gu; gt can be obtained from either the function � or the auxiliary function  .The function and derivative values are obtained from the auxiliary function  until someiterate satis�es the test  (�k) � 0 and  0(�k) � 0. Once this test is satis�ed, � is used.We have divided the trial value selection in four cases. In the �rst two cases we choose�+t by interpolating the function values at �l and �t so that the trial value �+t lies between�l and �t. We de�ne �+t in terms of �c (the minimizer of the cubic that interpolates fl, ft,gl, and gt), �q (the minimizer of the quadratic that interpolates fl, ft, and gl), and �s (theminimizer of the quadratic that interpolates gl and gt).Case 1: ft > fl. In this case compute �c, �q , and set�+t = 8><>: �c if j�c � �lj < j�q � �lj12(�q + �c) otherwise.Both �c and �q lie in I+ so they are both candidates for �+t . We desire a choice that is closeto �l since this is the point with the lowest function value. Both �q and �c are relativelyclose to �l because j�c � �lj � 23 j�u � �lj; j�q � �lj � 12 j�u � �lj:Thus, for the above choice of �+t ,j�+t � �lj � 712 j�u � �lj:A choice close to �l is clearly desirable when ft is much larger than fl. In this case thequadratic step is closer to �l than �c, but usually abnormally so. Indeed, if �q(ft) is thevalue of �q as a function of ft, then limft!1�q(ft) = �l:On the other hand, a computation shows thatlimft!1 �c(ft) = �l + 23(�u � �l):Thus, the midpoint of �c and �t is a reasonable compromise.Case 2: ft � fl and gtgl < 0. In this case compute �c, �s, and set�+t = 8><>: �c if j�c � �tj � j�s � �tj�s otherwise.Both �c and �s lie in I+ so they are both candidates for �+t . Since gtgl < 0, a minimizerlies between �l and �t. Choosing the step that is farthest from �t tends to generate a stepthat straddles a minimizer, and thus the next step is also likely to fall in this case.13



In the next case we choose �+t by extrapolating the function values at �l and �t, sothe trial value �+t lies outside of the interval with �t and �l as endpoints. We de�ne �+tin terms of �c (the minimizer of the cubic that interpolates fl, ft, gl, and gt) and �s (theminimizer of the quadratic that interpolates gl and gt).Case 3: ft � fl, gtgl � 0, and jgtj � jglj. In this case the cubic that interpolates thefunction values fl and ft and the derivatives gl and gt may not have a minimizer. Moreover,even if the minimizer �c exists, it may be in the wrong direction. For example, we mayhave �t > �l but �c < �t. On the other hand, the secant step �s always exists and is inthe right direction.If the cubic tends to in�nity in the direction of the step and the minimum of the cubicis beyond �t, set �+t = 8><>: �c if j�c � �tj < j�s � �tj�s otherwise.Otherwise, set �+t = �s. This choice is based on the observation that during extrapolationit is sensible to be cautious and choose the step closest to �t.The trial value �+t de�ned above may be outside of the interval with �t and �u asendpoints, or it may be in this interval but close to �u. Either situation is undesirable, sowe rede�ne �+t by setting�+t = 8><>: minf�t + �(�u � �t); �+t g if �t > �lmaxf�t + �(�u � �t); �+t g otherwisefor some � < 1. In our algorithm we use � = 0:66.In the last case the information available at �l and �t indicates that the function isdecreasing rapidly in the direction of the step, but there does not seem to be a good wayto choose �+t from the available information.Case 4: ft � fl, gtgl � 0, and jgtj > jglj. In this case we choose �+t as the minimizer of thecubic that interpolates fu, ft, gu, and gt,5 Numerical ResultsThe set of test problems that we use to illustrate the behavior of the search algorithmincludes convex and general functions. The �rst three functions have regions of concavity,while the last three functions are convex. In all cases the functions have a unique minimizer.Our numerical results were done in double precision on an IPX Sparcstation.The region of concavity of the �rst function in the test set is to the right of the minimizer,while the second function is concave to the left of the minimizer. The �rst function is de�ned14



by �(�) = � �(�2 + �) (5:1)with � = 2, while the second function is de�ned by�(�) = (� + �)5 � 2(�+ �)4 (5:2)with � = 0:004. Plots for these two functions appear in Figures 5.1 and 5.2.The third function in the test set was suggested by Paul Plassmann. This function isde�ned in terms of the parameters l and � by�(�) = �0(�) + 2(1� �)l� sin( l�2 �); (5:3)where �0(�) = 8>>>><>>>>: 1� � if � � 1� ��� 1 if � � 1 + �12� (� � 1)2 + 12� if � 2 [1� �; 1 + �]:The parameter � controls the size of �0(0) = ��. This parameter also controls the size ofthe interval where (1.2) holds because j�0(�)j � � for j�� 1j � �, and thus (1.2) can holdonly for j�� 1j < �. The parameter l controls the number of oscillations in the function forj� � 1j � � because in that interval �00(�) is a multiple of sin( l�2 �). Note that if l is odd,then �0(1) = 0, and that if l = 4k � 1 for some integer k � 1, then �00(1) > 0. Also notethat � is convex for j�� 1j < � if �(1� �) l�2 � 1:We have chosen � = 0:01 and l = 39. A plot of this function with these parameter settingsappears in Figure 5.3.The other three functions in the test set are from the paper of Yanai, Ozawa, and Kaneko[18]. These functions are de�ned in terms of parameters �1 and �2 by�(�) = 
(�1)[(1� �)2 + �22 ] 12 + 
(�2)[�2 + �21 ] 12 ; (5:4)where 
(�) = (1 + �2) 12 � �:These functions are convex, but di�erent choices of �1 and �2 lead to functions with quitedi�erent characteristics. This can be seen clearly in Figures 5.4, 5.5, and 5.6.In the tables below we present numerical results for di�erent values of �0. We haveused �0 = 10i for i = �1;�3. This illustrates the behavior of the algorithm from di�erentstarting points. We are particularly interested in the behavior from the remote startingpoints �0 = 10�3. 15
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Table 5.1: Results for the function in Figure 5.1 with � = 0:001 and � = 0:1�0 info m �m �0(�m)10�3 1 6 1.4 �9:2 10�310�1 1 3 1.4 4:7 10�310+1 1 1 10 9:4 10�310+3 1 4 37 7:3 10�4In our numerical results we have used di�erent values of � and � in order to illustratedi�erent features of the problems and the search algorithm. In many problems we haveused � = 0:1 because this value is typical of those used in an optimization setting. Wecomment on what happens for other values of � and �. The general trend is for the numberof function evaluations to decrease if � is decreased or if � is increased. The reason for thistrend is that as � is decreased or � is increased, the measure of the set of acceptable valuesof � increases.An interesting feature of the numerical results for the function in Figure 5.1 is thatvalues of � much larger than �� � 1:4 can satisfy (1.1) and (1.2). This should be clear fromFigure 5.1 and from the results in Table 5.1. These results show that if we use � = 0:001and � = 0:1, then the starting point �0 = 10 satis�es (1.1) and (1.2), and thus the searchalgorithm exits with �0. Similarly, the search algorithm exits with �4 � 37 when thestarting point is �0 = 10+3.We can avoid termination at points far away from the minimizer �� by increasing � ordecreasing �. If we increase � and set � = � = 0:1, then the algorithm terminates with�3 � 1:6 when �0 = 10 and with �7 � 1:6 when �0 = 10+3. There is no change in thebehavior of the algorithm from the other two starting points. If we decrease � by setting� = 0:001 but leave � unchanged at � = 0:1, then the �nal iterate �m is near �� forall starting points. For � = 0:001 the search algorithm needs six function evaluations for�0 = 10 and ten function evaluations for �0 = 10+3. The number of function evaluationsfor �0 = 10�3 and �0 = 10�1 is, respectively, 8 and 4. This increase in the number offunction evaluations is to be expected because now the set of acceptable � is smaller.Another interesting feature of the results in Table 5.1 is that the six function evaluationsneeded for �0 = 10�3 could have been predicted from the nature of the extrapolationprocess. This can be explained by noting that in a typical situation the extrapolationprocess generates iterates by setting �+t = �t + �(�t � �l) with � = 4, and thus�1 = 0:005; �2 = 0:021; �3 = 0:085; �4 = 0:341; �5 = 1:365;18



Table 5.2: Results for the function in Figure 5.2 with � = � = 0:1�0 info m �m �0(�m)10�3 1 12 1.6 7:1 10�910�1 1 8 1.6 1:0 10�1010+1 1 8 1.6 �5:0 10�910+3 1 11 1.6 �2:3 10�8until the minimizer is bracketed, or until one of these iterates satis�es the terminationconditions. This implies, for example, that if the minimizer is �� = 1:4, then either oneof the above iterates satis�es (1.1) and (1.2), or at least six functions are evaluations arerequired before the search algorithm exits.The number of function evaluations needed to �nd an acceptable � is usually dependenton the measure of the set of acceptable �. From this point of view, the only di�culttest problems are those based on the functions in Figures 5.2 and 5.3, because for thesefunctions the set of acceptable � is small. The choice of � = 0:004 for the function inFigure 5.2 guarantees that this function has a large region of concavity, but also forces �0(0)to be quite small (approximately �5 10�7). As a consequence (1.2) is quite restrictive forany � < 1. Similar remarks apply to the numerical results for the function in Figure 5.3.This is a di�cult test problem because information based on derivatives is unreliable as aresult of the oscillations in the function. Moreover, as already noted, (1.2) can hold onlyfor j�� 1j < �.In Table 5.2 we present the numerical results for the function in Figure 5.2. In this tablewe have used � = � = 0:1, but these results remain unchanged if we set � = 0:1 and chooseany � < �.The number of function evaluations in Table 5.2 compares favorably with a search al-gorithm based on bisection. Given the starting value �0 = 10, a search algorithm basedon bisection requires 48 function evaluations to determine an acceptable � because in thisproblem the set of acceptable � is an interval of approximate length 2:5 10�9. The compar-ison is even more favorable for the starting point �0 = 10+3 because in this case a bisectionalgorithm requires 107 function evaluations.For the function in Figure 5.3 the set of acceptable � is an interval of length 10�3, so abisection algorithm requires 10 function evaluations for the starting value �0 = 10, and 30function evaluations for �0 = 10+3. If we now compare this information with the numericalresults in Table 5.3, we see that the search algorithm of this paper performs better than analgorithm based on bisection. This is surprising because for this function the information19



Table 5.3: Results for the function in Figure 5.3 with � = � = 0:1�0 info m �m �0(�m)10�3 1 12 1.0 �5:1 10�510�1 1 12 1.0 �1:9 10�410+1 1 10 1.0 �2:0 10�610+3 1 13 1.0 �1:6 10�5Table 5.4: Results for the function in Figure 5.4 with � = � = 0:001�0 info m �m �0(�m)10�3 1 4 0.08 �6:9 10�510�1 1 1 0.10 �4:9 10�510+1 1 3 0.35 �2:9 10�610+3 1 4 0.83 1:6 10�5provided by �0 is unreliable.The numerical results for the problems based on function (5.4) appear in Tables 5.4,5.5, and 5.6. In all these tables we have chosen � = � = 0:001. Although these choices arenot typical of those found in an optimization environment, they lead to more interestingresults.If we compare the results in these three tables, we notice that for a given startingpoint, the number of function evaluations sometimes di�ers considerably. The results inTables 5.5 are typical of those that occur for � = 0:001. In examining the results inTable 5.5, allowances must be made for the fact that the starting points are not distributedsymmetrically around the minimizer �� � 0:074. In particular, the small number of functionevaluations for �0 = 0:1 is mainly due to the fact that in this case �0 is close to ��.The number of function evaluations in Table 5.4 is lower because the set of acceptable �is unusually large. In particular, note that the value �m returned by the search algorithmis not close to the minimizer �� = 12 of the function in Figure 5.4.The number of function evaluations in Table 5.6 is higher because in this problem itis di�cult to determine an iterate �k such that �0(�k) > 0 and �k satis�es the su�cientdecrease condition. Recall that once such an iterate is determined, we know that theproblem has a minimizer that satis�es the su�cient decrease condition.20



Table 5.5: Results for the function in Figure 5.5 with � = � = 0:001�0 info m �m �0(�m)10�3 1 6 0.075 1:9 10�410�1 1 3 0.078 7:4 10�410+1 1 7 0.073 �2:6 10�410+3 1 8 0.076 4:5 10�4Table 5.6: Results for the function in Figure 5.6 with � = � = 0:001�0 info m �m �0(�m)10�3 1 13 0.93 5:2 10�410�1 1 11 0.93 8:4 10�510+1 1 8 0.92 �2:4 10�410+3 1 11 0.92 �3:2 10�4In an optimization setting, we would not tend to use � = 0:001, and then the number offunction evaluations needed to obtain an acceptable � would decrease considerably. Con-sider, for example, the results for the function in Figure 5.6 with � = 0:001 and � = 0:1. Forthese settings, the number of function evaluations needed to obtain an acceptable � fromthe starting points �0 = 10i for i = �3;�1; 1; 3 would be, respectively, 2; 1; 3; 4. Similarresults would be obtained for the functions in Figures 5.4 and 5.5.Acknowledgments. This work bene�ted from discussions and suggestions from manysources. We thank, in particular, Bill Davidon, Roger Fletcher, and Michael Powell. Weare also grateful to Jorge Nocedal for his encouragement during the �nal phases of this work,to Paul Plassmann for providing the monster function of Section 5, and to Gail Pieper forher careful reading of the manuscript.References[1] M. Al-Baali, Descent property and global convergence of the Fletcher-Reeves methodwith inexact line searches, IMA J. Numer. Anal., 5 (1985), pp. 121{124.[2] M. Al-Baali and R. Fletcher, An e�cient line search for nonlinear least squares,J. Optim. Theory Appl., 48 (1984), pp. 359{377.21
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